Semiparametric Estimation in Time Series of Simultaneous Equations

نویسندگان

  • Jiti Gao
  • Peter C. B. Phillips
چکیده

A system of vector semiparametric nonlinear time series models is studied with possible dependence structures and nonstationarities in the parametric and nonparametric components. The parametric regressors may be endogenous while the nonparametric regressors are strictly exogenous and represent trends. The parametric regressors may be stationary or nonstationary and the nonparametric regressors are nonstationary time series. This framework allows for the nonparametric treatment of stochastic trends and subsumes many practical cases. Semiparametric least squares (SLS) estimation is considered and its asymptotic properties are derived. Due to endogeneity in the parametric regressors, SLS is generally inconsistent for the parametric component and a semiparametric instrumental variable least squares (SIVLS) method is proposed instead. Under certain regularity conditions, the SIVLS estimator of the parametric component is shown to be consistent with a limiting normal distribution that is amenable to inference. The rate of convergence in the parametric component is the usual √ n rate and is explained by the fact that the common (nonlinear) trend in the system is eliminated nonparametrically by stochastic detrending.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiparametric Bootstrap Prediction Intervals in time Series

One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...

متن کامل

Semiparametric Estimation in Simultaneous Equations of Time Series Models

A system of vector semiparametric nonlinear time series models is studied with possible dependence structures and nonstationarities in the parametric and nonparametric components. The parametric regressors may be endogenous while the nonparametric regressors are strictly exogenous. The parametric regressors may be stationary or nonstationary and the nonparametric regressors are nonstationary ti...

متن کامل

Extended Geometric Processes: Semiparametric Estimation and Application to ReliabilityImperfect repair, Markov renewal equation, replacement policy

Lam (2007) introduces a generalization of renewal processes named Geometric processes, where inter-arrival times are independent and identically distributed up to a multiplicative scale parameter, in a geometric fashion. We here envision a more general scaling, not necessar- ily geometric. The corresponding counting process is named Extended Geometric Process (EGP). Semiparametric estimates are...

متن کامل

An introduction to efficient estimation for semiparametric time series

We illustrate several recent results on efficient estimation for semiparametric time series models with two types of AR(1) models: having independent and centered innovations, and having general and conditionally centered innovations. We consider in particular estimation of the autoregression parameter, the stationary distribution, the innovation distribution, and the stationary density.

متن کامل

Identification, Estimation and Specification In a Class of Semiparametric Time Series Models

In this paper, we consider some identification, estimation and specification problems in a class of semi–linear time series models. Existing studies for the stationary time series case have been reviewed and discussed. We also establish some new results for the integrated time series case. In the meantime, we propose a new estimation method and establish a new theory for a class of semi–linear ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010